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Abstract

The STAR collaboration at RHIC is measuring the production of electron-

positron pairs at small impact parameters, larger than but already close to the

range, where the ions interact strongly with each other. We calculate the total

cross section, as well as, differential distributions of the pair production process

with the electromagnetic excitation of both ions in a semiclassical approach and

within a lowest order QED calculation. We compare the distribution of electron and

positron with the one coming from the cross section calculation without restriction

on impact parameter. Finally we give an outlook of possible results at the LHC.

1 Introduction

Pair production in relativistic heavy ion collisions has attracted interest in the past mainly
due to the fact that the strong fields allow for multiple pairs to be produced. At impact
parameter of the order of twice the nuclear radius, but still larger than this, so that the
two ions do not interact hadronically with each other (that is the regime of the so-called
“ultraperipheral collisions” UPC), the total pair production multiplicity is found to be
about 1.5 for AuAu collisions at RHIC and about 3.9 for PbPb collisions at the LHC.
These results are based on a lowest order QED calculation [1] and one might suspect that
at these small impact parameters the strong fields of the two ions do lead to higher order
corrections.

Therefore it is of interest to measure electron-positron pairs produced in such collisions
and compare their distribution with theoretical predictions, e.g., in lowest order QED. The
STAR collaboration has recently measured e+e− pairs in collisions, which were selected by
a trigger, looking for the simultaneous excitation of the two ions (mainly to the GDR) in
addition to the pair production process [2, 3, 4], see Fig. 1. Such an event is characterized
by the subsequent emission of one or only a few neutrons, which are then detected in the
forward ZDC (“Zero Degree Calorimeter”). This tagging was first proposed in order to
study vector meson production [5, 6, 7]. Mutual excitation of the two ions is also used
for the luminosity measurement at RHIC [8, 9].

As the average impact parameter in such collisions is only about [10]

b =

∫

d2b bP (b)
∫

d2bP (b)
≈

8Ra

3
≈ 19 fm, (1)
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one may expect strong field effects to be present for the pairs.
Due to the design of the STAR detector only electrons and positrons having a trans-

verse momentum pt > 65 MeV/c and being emitted with a rapidity |y| < 1.15 can be
detected. As most of the pairs produced in ultraperipheral collisions (UPCs) are emitted
with energies of the order of a few mec

2 and at small angles, such a measurement can
only look at the tails of the distribution of the pairs. Even this momentum range was
only possible due to a lowered magnetic field in the STAR detector.

One approach to the calculation of this process is the use of the impact parameter
dependent equivalent photon approximation [11, 12, 13, 14]. The additional electromag-
netic processes are easily incorporated in this semiclassical approach and the cross section
can be expressed as

d6σe+e−,2GDR

d3p+d3p−
=
∫

d2bP 2
GDR(b)

d4L

d2bdω1dω2

d6σγγ→e+,e−(ω1, ω2)

d3p+d3p−
. (2)

where σγγ→e+,e− denotes the cross section for real photons and d4L/d2bdω1dω2 the impact
parameter dependent photon-photon luminosity (for the details of the photon-photon
luminosity, see Sec. 2.7 of [15] and references therein). One difficulty in this approach
is the correct choice of the cutoff parameter present in the expression for the photon
spectrum. This is especially difficult due to the smallness of me, which is much smaller
than the “usual cutoff” imposed on the maximal transverse momentum of the photon
from the elastic form factor of the ion, which is given by 1/RA ≈ 80 MeV. It was found
that the total cross section for electron-positron pair production is only reproduced with
a cutoff chosen around me. On the other hand it was also found that neither a choice of
me nor of RA is able to predict the total probability at impact parameter smaller than the
Compton wave length λc = 386 fm [1]. For a discussion about the choice of the impact
parameter see, e.g., [16]. In addition in the usual semiclassical approach the transverse
momentum distribution of the photons is integrated over. In order to get, for example,
the transverse momentum distribution of the pair, one needs to take this momentum
distribution into account to get the correct final result. For a possible approach taking
this into account from first principles see [17, 18].

In Section 2 we show how our calculation is done in lowest order QED and in the
semiclassical approximation. This is then used in Sec. 3 to calculate total cross sections,
differential distributions for RHIC and also for possible LHC conditions. The comparison
with the experimental results has been done in the meantime and will be presented by
the STAR collaboration in another publication [19].

2 Calculation of pair production and nuclear excita-

tion in lowest order QED

The STAR experiment at RHIC measures the pair production cross section together with
the double electromagnetic excitation in both ions, see Fig. 1. In order to incorporate the
experimental conditions in the theoretical calculation, it is most appropriate to work in
the semiclassical approach. Using the fact, that in this approach the probabilities of the
individual processes factorize and are given by the product of the individual probabilities
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Figure 1: The pair production together with the electromagnetic excitation of both ions,
predominantly to the giant dipole resonance (GDR) is shown as one typical Feynman
diagram. The process in lowest order involves at least the exchange of four photons
(many more “soft Coulomb photons” are exchanged as well). Due to this the process
predominantly occurs at small impact parameter, where the electromagnetic fields are
strong, in contrast to the unrestricted cross section (without electromagnetic excitation
of the ions), which has contributions coming also from large impact parameters.

(for a theoretical description of this approach, see [10]) we can write the cross section for
this process as

d6σe+e−,2GDR

d3p+d3p−
= 2π

∫

∞

bmin

bdbP 2
GDR(b)

d6P (b)

d3p+d3p−
. (3)

The minimum impact parameter was chosen to be bmin = 2Ra ≈ 14fm, where we as-
sume the nuclei to touch, that is, interact hadronically with each other. The use of the
semiclassical description in this case is not only justified due to the strong Coulomb in-
teraction between the two ions (leading to a large number of “soft” Coulomb photons
exchanged between them), but also simplifies the calculation of this higher order process
(pair production plus two GDR excitation processes) considerably.

Following [20] the probability for GDR excitation in one ion is to a good approximation
given as

PGDR(b) = S/b2 (4)

with

S =
2α2Z3N

AmNω
≈ 5.45 × 10−5Z3NA−2/3fm2. (5)

where mN denotes the nucleon mass, and the neutron-, proton-, and mass-number of the
ions are N, Z, and A respectively (we consider only symmetric collisions here, the calcu-
lation can trivially be extended to incorporate also asymmetric systems). The excitation
probability is inversely proportional to the energy ω (≈ 80MeVA−1/3) of the GDR state.
Neutrons are not only emitted from the GDR excitation but are also coming from higher
excited states [8, 21, 22]. These can be taken into account approximately by increasing S
accordingly. As this does not change the 1/b2 behavior for the small impact parameter,
we are interested in, and only leads to a rescaling of the total cross section, not the form
of the differential distributions, we have used in our calculation the more simple value of
S in Eq. (5). Of course one needs then to include in addition the different decay chan-
nels into one, two, etc. neutrons [23, 24, 25], as well as, the fact that the probability for
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GDR excitation is already quite large (about 0.5 for bmin) so that multiphoton excitation
mechanisms need to be included as well. Assuming a Poisson distribution for the different
(independent) excitation processes, one would need to replace PGDR(b) then with [21]

P (b) = 1 − exp(PGDR(b)). (6)

One sees that the multiphoton excitation tends to reduce again the probability (it has
to stay below the unitarity limit of 1). In the appendix we show how a more complex b
dependence than a simple 1/b2 for PGDR(b) can be calculated within the same approach.
Therefore an improved calculation can be done in this way. On the other hand for the
current experimental accuracy the simplified approach seems to be appropriate.

With this the cross section for pair production together with the GDR excitation of
both ions is given by

d6σe+e−,2GDR

d3p+d3p−
= 2π

∫

∞

bmin

bdbP 2
GDR(b)2π

∫

qdq
d6P̂ (q)

d3p+d3p−
J0(qb) (7)

= (2π)2S2
∫

qdq
d6P̂ (q)

d3p+d3p−

∫

∞

bmin

bdb
J0(qb)

b4
(8)

= (2π)2S2
∫

qdq
d6P̂ (q)

d3p+d3p−

∫

∞

bmin

db

b3
J0(qb) (9)

where we have introduced the two-dimensional Fourier transform of the impact parameter
dependent probability for pair production d6P (b)/d3p+d3p− as

d6P (b)

d3p+d3p−
=
∫

d2q exp(i~q~b)
d6P̂ (~q)

d3p+d3p−
= 2π

∫

qdq
d6P̂ (q)

d3p+d3p−
J0(qb) (10)

We rewrite the integral over b in dimensionless units as

∫

∞

bmin

db

b3
J0(qb) = q2

∫

∞

qbmin

dx

x3
J0(x) =: q2I3(qbmin). (11)

Following the derivation of [1, 26], one can calculate the two-dimensional Fourier

transform d6P (~b)
d3p+d3p−

in lowest order QED. The two Feynman diagrams for this process in
the semiclassical approximation are shown in Fig. 2. One gets the differential probability
as

d6P̂ (q)

d3p+d3p−
= (Zα)4 4

β2γ4

1

(2π)62ǫ+2ǫ−

∫

d2q1[N0N1N3N4]
−1

×Tr
{

( 6p− + m)
[

N−1
2D 6u(1)( 6p−− 6q1 + m) 6u(2) + N−1

2X 6u(2)( 6q1− 6p+ + m) 6u(1)
]

×( 6p+ − m)
[

N−1
5D 6u(2)( 6p−− 6q′1 + m) 6u(1) + N−1

5X 6u(1)( 6q′1− 6p+ + m) 6u(2)
]

}

. (12)

with
N0 = −q2

1 , N1 = −(q2
1 − (p+ + p−))2,

N3 = −(q1 + q)2, N4 = −[q1 + (q − p+ − p−)]2,
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(2)

(1)

(2)

Figure 2: The two Feynman diagrams contributing to pair production in lowest order
QED are shown. The crossed denote the coupling to the (external) Coulomb field of one
of the ions.

N2D = −(q1 − p−)2 + m2, N2X = −(q1 − p+)2 + m2,

N5D = −[q1 + (q − p−)]2 + m2, N5X = −[q1 + (q − p+)]2 + m2,

with the longitudinal component of q1 given by q10 = 1
2
[(ǫ+ + ǫ−) + β(p+z + p−z)], q1z =

1
2β

[(ǫ+ + ǫ−) + β(p+z + p−z)] = 1
β
q10 and u(1,2) = γ(1, 0, 0,±β) are the four velocity of

the two ions, γ and β the Lorentzfactor and velocity of each ion in the center of mass
frame. We have included in addition a nuclear form factor F (q). We choose for ease of
computation in our case a monopole form factor of the form

F (q) =
Λ2

Λ2 − q2
=

Λ2

Λ2 + Q2
(13)

where Λ2 = 6
<R2>

is set to about 80 MeV in order to reproduce the rms radius of the

ion. This leads in the terms N−1
0 , N−1

1 , N−1
3 and N−1

4 to a replacement of the term 1/q2

by F (q)/q2. The integration over d2q1 can be done analytically, using the usual tricks for
Feynman integrations in two dimensions. For details of this, we refer the reader to [1].

The integral I3(z = qbmin) in Eq. (11) can be solved analytically and calculated easily,
as is shown in the appendix.

Finally we make the integral over dq dimensionless to get

d6σe+e−,2GDR

d3p+d3p−
= (2π)2 S2

b4
min

∫

z3dz
d6P̂

(

z
bmin

)

d3p+d3p−
I(z). (14)

For the unrestricted differential cross section (that is without triggering on the ad-

ditional electromagnetic excitations of the ions), we integrate over ~b without the factor
P 2

GDR(b) in Eq. (3). As the contribution coming from b < bmin is small, we have extended
the integration over all b.

d6σe+e−

d3p+d3p−
=

∫

d2b
d6P (b)

d3p+d3p−

=
∫

d2b d2q
˜

d6P̂ (q)

d3p+d3p−
exp(i~q~b)

= (2π)2
∫

d2q δ(~q)
d6P̂ (q)

d3p+d3p−
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= (2π)2 d6P̂ (0)

d3p+d3p−
. (15)

This approach was pursued in [26] and total and differential cross sections were calculated.
For the unrestricted cross sections we do not take a nuclear form factor of the two ions
into account, as pair productions occurs predominantly at large impact parameter and
for small q2 of the two photons.

Whereas for the unrestricted cross section only the value of P̂ (q) for q = 0 is needed,
here our expression is a folding over a range of q given in terms of 1/bmin. In order to
compare the differential distributions in both the restricted and in the unrestricted case
we have also made calculations of the unrestricted cross section with the same kinematical
restrictions as in the case with GDR excitations.

The expression of Eq. (14) is in a form, which can be evaluated using a Monte Carlo
integration for both the integration over z, as well as, the six-dimensional integration
over p+ and p− at the same time. For this we have used VEGAS [27]. Both P (q) and J int

0

are oscillatory functions, having both positive and negative values, which could lead to
cancellations. Looking at z3I(z) together with the result of P (z/bmin) one sees that the
integrand falls off for large z, that is for large q. It is found that the main contribution
comes from the region around z = 2 and that the contribution from the negative part at
larger z are suppressed. The integration will have positive and negative contributions but
the cancellations between them are not severe. With the help of VEGAS we can get the
total cross section and also differential cross sections by binning the differential results.

3 Results

We have made calculations of the total cross section and differential distributions of the
electron, the positron and the pair including the experimental restrictions at STAR. The
integration over b (or equivalently q) is incorporated into the Monte Carlo integration.
Another strategy would be to calculate d6P̂ (q)/d3p+d3p− for different values of q and
fixed values of p+, p− and do a Bessel transform in each case. For the total cross section,
that is P̂ (q), this can be done and was done as an independent check of our approach.
To obtain differential cross sections, this approach is rather cumbersome.

In a first step, we have calculated the total cross section as a function of bmin, the
minimum impact parameter, by using three different approaches: We can calculate P (b)
directly for the pair production process and integrate numerically over b. Second we
can start from P̂ (q) directly and do the integration over q numerically via the Fourier
transformed of PGDR(b), that is, using I(z). Finally we have done the calculation with the
integration over q, that is z, directly with the Monte Carlo integration. In all three cases
we have restricted the phase-space integration over the momenta of electron and positron
according to the experimental conditions of STAR: pt > 60 MeV/c and |y| < 1.15 for
each lepton. The results are shown in Fig 3. The lines correspond to calculations with
and without a monopole form factor for the nucleus, showing that the incorporation of a
form factor is important. All three results agree quite well with each other, showing that
our approach is working well.

From this we get a total cross section for AuAu collisions at RHIC, including the
restrictions |pt| > 60 MeV/c, |y| < 1.15 of 2.30, 1.76, 1.43 mb, for bmin = 13, 14 and
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Figure 3: The total cross section including kinematical restrictions of the STAR experi-
ment are shown as a function of the minimal allowed impact parameter bmin. Calculations
with and without a form factor for the nucleus are shown. The lines were calculated by
calculating P (b) first and integrating then over b. These lines are in perfect agreement
with a similar approach, where P (q) is calculated first and then integrated over q. The
circles correspond to the results of our Monte Carlo approach, where, as explained in the
text, both the integration over q and over p+ and p− are done within the Monte Carlo
integration routine.

15fm, respectively. In addition we have calculated a number of differential distributions,
which were also studied at STAR. The transverse momenta and energy distribution of the
electron and positron are shown in Fig. 4. In lowest order QED the distribution of electron
and positron are identical to each other. The difference between the two distributions can
therefore be seen as a measure of the accuracy the MC integration. One can look also
at properties of the produced pair: The transverse momentum and the invariant mass
of the pair are shown in Fig. 5. We have not shown the rapidity distribution, which we
found to be more or less flat over the allowed range. In all four diagrams we show also
the differential distributions of the unrestricted cross section. We have rescaled the data,
so that the total cross section are the same in both cases. We see that the transverse
momentum distribution and the energy distribution of the individual leptons are more
or less identical in shape. The same is also true for the invariant mass distribution, with
the only exception that the “tail” at low invariant masses is higher for the unrestricted
distributions. The biggest effect is seen in the transverse momentum distribution of the
pair. Here we also expect the effect of the small impact parameter (corresponding to larger
transverse momenta of the photons) to be largest. The slower fall-off at larger transverse
momenta is most probably due to the fact that no form factor was used in the calculation
of this cross section, which should be visible at Pt > 80 MeV/c. In order to investigate the
effect of the nuclear form factor and in order to understand the large difference between
the cross section with and without nuclear form factor, see Fig. 3 above, we show in this
plot also the transverse momentum distribution of the pair for a calculation without form
factor. It can be seen that in this case the cross section gets sizeable contributions for
Pt > 80 MeV/c.
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Figure 4: Energy and transverse momentum distribution are shown for the electron and
the positron. In lowest order QED the two distributions are identical and the spread be-
tween the two is a measure of the uncertainties coming from the Monte Carlo integration.
This is compared with a unrestricted cross section calculation (dotted line), normalized
to give the same total cross section.

We have studied in addition the question, whether especially the distribution as a
function of Pt of the pair is sensitive to the form of PGDR(b) used in our approach. Using
a more general approach, see appendix for details, one expect that the next correction is of
the form P 3

GDR(b) ∼ 1/b6 instead of P 2
GDR(b) ∼ 1/b4. In such a model the average impact

parameter changes from about 8Ra

3
≈ 19 fm to about 12Ra

5
≈ 17 fm, which is a small

change compared to the Compton wavelength of the electron (400 fm), but is still a 10%
reduction of this average impact parameter. We have therefore studied the distribution
of electron and positron for this restriction. As expected the differential distributions are
found to be the same within the uncertainties of the Monte Carlo approach used.

As an outlook for future experiments we are showing results and distributions one
might expect to see for PbPb collisions at the LHC. Using the same kinematical restric-
tions as for the STAR experiment, the results are shown in Fig. 6 and 7.

As a rather optimistic estimate we have calculated also the differential cross section
for a kinematical range of |pt| > 2.6 MeV/c and |y| < 1.5, where ALICE will be able to
detect the electrons with its Internal Trigger System (ITS), even though it will not be
able to measure energies or momenta.

With these kinematical conditions we can study the question, whether ALICE will be
able to see multiple pairs produced in a single collisions. For this we calculate the impact
parameter dependent cross section under the kinematical conditions. One finds that for
impact parameters close to bmin P (b) ≈ 20%. Following [28, 26, 29, 30] we use a Poisson
distribution as a good approximation for the N pair production probability

P (N, b) =
P (b)N

N !
exp(−P (b)) (16)

Multiplying with P 2
GDR(b) and integrating over b we get the cross section for one, two,

. . . pair production. The result as a function of bmin is shown in Fig. 8 together with the
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Figure 5: The invariant mass and the transverse momentum of the e+e− pair are shown.
Again the results are compared with the unrestricted cross section (dotted line). In addi-
tion we have plotted the result of the restricted calculation without form factor (dashed
line). Both results have been normalized to give the same total cross section.

total cross section

σtotal =
∞
∑

N=1

σ(N) (17)

The cross section one would get from the Born cross section can be interpreted as a
“multiplicity” cross section

σBorn =
∫

d2bP 2(GDR, b)P (b) =
∞
∑

N=1

σ(N) (18)

and would be relevant in order to calculate the number of pairs produced (in contrast
to the number of events). One can see that about 10% of all events are multiple pair
production events and accordingly also about 10% of all pairs are produced in a multiple
pair production process. This shows that at ALICE one should be able to detect and
study multiple pair production.

We have investigated a similar question also for RHIC using as an estimate for a
possible range pt > 50 MeV/c and 2.5 < y < 4.0. Unfortunately the probability for pair
production under these conditions is only of the order of a few permille and therefore
the multiple pair production cross section is less than one permille of the single pair
production cross section, making such an investigation difficult.

4 Discussion and Outlook

We have calculated total and differential cross section of the pair production process
in ultraperipheral heavy ion collisions in lowest order QED for the simultaneous elec-
tromagnetic excitation of both ions. We have seen that the most sensitive quantity is
the transverse momentum distribution, which differs mostly from the distribution of the
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Figure 6: Energy and transverse momentum distribution are shown for the two leptons
for PbPb collisions at the LHC (solid line). This is compared with the rescaled spectrum
of AuAu collisions at RHIC (dotted line).

unrestricted cross section. As the comparison will show [19, 2] our results were found
to be in good agreement with the experimental results. On the other hand only about
50 events were found at STAR, so the overall statistics is not very good. Additional
runs might give better statistics. Still our analysis shows that the data at the moment
give no sign that higher order Coulomb effects are large for pairs produced with these
large transverse momenta [31]. Such higher order Coulomb effects would lead most likely
to an asymmetry of the electron and positron distribution especially for the transverse
momentum distribution. At the moment however no calculation exists, which describes
consistently the effects of the strong Coulomb fields of both pairs on the pair production
process at small impact parameter. The experimental condition of RHIC does not allow
to look for multiple pair production effects as the probability for pair production with
these conditions is well below one.

As already mentioned above the transverse momentum cut of pt > 65 MeV/c at STAR
was only possible due to a reduced magnetic field. There are currently plans to use even
lower magnetic fields and also making use of other detectors within STAR [32] in order
to extend the measurements both to smaller transverse momenta and to larger rapidities.
It remains to be seen, whether the new phenomenon of multiple pair production, will
then be detected. On the other hand with the low transverse momentum cutoff of the
ITS at ALICE/LHC, about 10% of all pair production events are going to be multiple
pair production processes, therefore one should expect that this new phenomena will
be observed easily there. The fact that no kinematical information and also no particle
identification is possible at ALICE, will make such a measurement still a challenge.
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6 Appendix

Throughout our calculations we have assumed that only the GDR excitation is relevant
for the triggering and therefore a simplified dependence on b, see Eq. (4) has been used.
In this appendix we want to show that this is not a real limitation, but that other
impact parameter dependencies can be treated as well. For example assuming that the
higher resonant states of the GDR are excited through a Poisson process, we would
need to replace PGDR(b) by 1 − exp(−PGDR(b)). In general we assume that the relevant
PA→A∗

→X+xn(b) can be expressed as a series of inverse powers of b

PA→A∗
→X+xn(b) =

∞
∑

n=0

Sn

bn
(19)

Using this in the expression for d6σe+e−,2GDR/(d3p+d3p−), see Eq. (14), we need to calcu-
late generalizations of I(z), Eq. (11) of the form

In(z) :=
∫

∞

z

dx

xn
J0(x) (20)

with I3(z) corresponding to the one used in our calculations.
For the calculation of these integrals, we first use the following recursion relation

In(z) =
J0(z)

(n − 1)zn−1
−

J1(z)

(n − 1)2zn−2
−

1

(n − 1)2
In−2(z) (21)

This relation can be easily derived by partial integration and by using the well-known
recursion relations between the Bessel functions Jn(z) [33]. By repeated application of
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sections.

Eq. (21) every In with odd and even n can be reduced to the starting values I1(z) and
I0(z), respectively, which are given in the literature [33]:

I0(z) = 1 − z 1F2

(

1

2
; 1,

3

2
;−

z2

4

)

(22)

and

I1(z) =
z2

8
2F3

(

1, 1; 2, 2, 2;−
z2

4

)

− ln
z

2
− γ (23)

where γ is the Euler constant.
These two expressions can be calculated easily by the rapidly converging power series

of the hypergeometric functions or by using suited polynomial expressions given in the
literature [33]. We are here only interested in the case, where n = 2m + 1 is an odd
number, in which case the complete recursion relation is given by

I2m+1(z) =
(−1)m

m!222m+1

{

J0(z)
m
∑

s=1

s!(s − 1)!
(

−
4

z2

)s

−
z

2
J1(z)

m
∑

s=1

(s − 1)!2
(

−
4

z2

)s

+ I1(z)

}

.

(24)
Moreover this equation can be further simplified, by splitting off the terms singular at
z = 0 (the principal part of the Laurent expansion in z), by using the power series for
the Bessel functions:

Jm(z) =
(

z

2

)m ∞
∑

k=0

(−z2/4)k

k!(k + m)!
(25)

and by rearranging the resulting sum. After some straightforward algebra we thus obtain
the compact expression for m ≥ 0

I2m+1(z) =
(−1)m

22m+3(m + 1)!2
z2

2F3

(

1, 1; 2, 2 + m, 2 + m;−
z2

4

)

(26)

−
(−1)m

22m(m)!2

(

ln
z

2
+ γ

)

+
m
∑

k=0

am,kz
−2k (27)
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where

am,0 =
(−1)m

22mm!2

m
∑

s=1

1

s
, am,k =

(−1)m−k

22(m−k)+1(m − k)!2k
k ≥ 1 (28)

For m = 1 we get the explicit expression

I3(z) =
1

2z2
+

1

4

(

ln
z

2
+ γ − 1

)

−
1

128
z2

2F3(1, 1; 2, 3, 3;−z2/4) (29)

and similarly for m = 2. Again the hypergeometric function in Eq. (27) can well be
calculated numerically by its power series:

2F3

(

1, 1; 2, 2 + m, 2 + m;−
z2

4

)

= (m + 1)!2
(

−
4

z2

) ∞
∑

k=1

(

−z2

4

)k

k(k + m)!2
. (30)

We use this rapidly converging power series in our numerical calculations. For the case
where n is an even number, the same approach can be used. For completeness we only
give here the final result:

I2m(z) =
1

22m−1(2m − 1)
1F2

(

−m +
1

2
;−m +

3

2
, 1;−

z2

4

)

+
(−1)m22mm!2

(2m)!2
. (31)
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